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Abstract Significant population increase in urban areas is likely to result in a deterioration of drought
security and level of service provided by urban water resource systems. One way to cope with this is to opti-
mally schedule the expansion of system resources. However, the high capital costs and environmental
impacts associated with expanding or building major water infrastructure warrant the investigation of
scheduling system operational options such as reservoir operating rules, demand reduction policies, and
drought contingency plans, as a way of delaying or avoiding the expansion of water supply infrastructure.
Traditionally, minimizing cost has been considered the primary objective in scheduling capacity expansion
problems. In this paper, we consider some of the drawbacks of this approach. It is shown that there is no
guarantee that the social burden of coping with drought emergencies is shared equitably across planning
stages. In addition, it is shown that previous approaches do not adequately exploit the benefits of joint opti-
mization of operational and infrastructure options and do not adequately address the need for the high
level of drought security expected for urban systems. To address these shortcomings, a new multiobjective
optimization approach to scheduling capacity expansion in an urban water resource system is presented
and illustrated in a case study involving the bulk water supply system for Canberra. The results show that
the multiobjective approach can address the temporal equity issue of sharing the burden of drought emer-
gencies and that joint optimization of operational and infrastructure options can provide solutions superior
to those just involving infrastructure options.

1. Introduction

In view of the worldwide trend of significant population growth in major cities, it is expected that planners
responsible for urban water resource systems will need to cater for a growing demand for water. In addition,
they will need to address the challenges arising from future climate change and changing community
expectations about level of service and acceptable impacts on environmental systems. In the face of such
change, it is expected that the performance of urban water resource systems (as expressed by drought
security and level of service) is likely to deteriorate resulting in the need for interventions to augment sys-
tem resources and improve water use efficiency.

Capacity expansion involves the provision of additional yield by increasing the capacity of existing infra-
structure and the construction of new infrastructure harvesting new sources of water. In its simplest mani-
festation, capacity expansion deals with sizing reservoirs. For example, Khaliquzzaman and Subhash [1997]
developed a model for sizing multiple reservoirs. Mousavi and Ramamurthy [2000] proposed an optimiza-
tion method to determine the optimal multireservoir system design for water supply by converting two
objectives, minimum cost and minimum water deficit, to a single objective function. Nainis and Haimes
[1975] applied a multilevel approach for capacity expansion in water resource systems; they extended clas-
sic benefit-cost analysis, describing their approach as dynamic benefit-cost analysis. Yang et al. [2007]
applied the concept of multiobjective optimization to reservoir capacity expansion trading off two objec-
tives, minimizing capital costs and minimizing costs arising from water shortages.

Other studies have extended the concept of capacity expansion to include options other than those dealing
with sizing reservoirs. For instance, Nakashima et al. [1986] developed a two-phase heuristic optimization
technique to determine a water supply system layout and to size water production and transmission facili-
ties. Hsu et al. [2008] developed a methodology to detect potential bottlenecks in a water distribution sys-
tem with the aim of facilitating capacity expansion plans. Dziegielewski et al. [1992] incorporated drought
management plans into their capacity expansion analysis; they assessed the trade-off between long-term
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and short-term options to manage drought by estimating the expected cost of coping with drought. Basa-
gaoglu and Yazicigil [1994] considered capacity expansion in the context of a groundwater system.

All the aforementioned studies have focused on making decisions at the start of the planning period. How-
ever, decisions to expand capacity can be implemented at different points of time over the planning period
to take advantage of delaying a portion of investment outlays. Although the construction of large infrastruc-
ture at the start of the planning period exploits the economies of scale, the time discounting of costs and
the uncertain dynamics of growth may nonetheless favor smaller projects staged over the planning period.
To analyze this trade-off, a number of studies have considered scheduling expansion [Braga et al., 1985;
Chang et al., 2009; Gillig et al., 2001; Grossman and Marks, 1977; Kim and Yeh, 1986; Knudsen and Rosbjerg,
1977; Lund, 1987; Mahmoud, 2006; Voivontas et al., 2003; Watkins and McKinney, 1998].

Scheduling expansion problems have typically been formulated to find the timing of predefined projects
that minimize the total present worth cost (PWC). Indeed, given this perspective, the main aim is to find the
best sequence of projects [Luss, 1982]. However, projects often can be implemented at different scales.
Thus, the scheduling problem can be generalized to find the optimum timing and scale of predefined proj-
ects. This is referred to as the scheduling capacity expansion problem.

A number of studies have investigated the scheduling capacity expansion problem in a water resources
context. Knudsen and Rosbjerg [1977] developed a general dynamic programming algorithm to find the
optimal scheduling of water supply projects. Kim and Yeh [1986] introduced a heuristic solution procedure
to find an optimal sequence of capacity expansion projects. Connarty and Dandy [1996] used genetic algo-
rithm optimization to find the optimum sequence involving nine reservoirs for a case study based on the
southeast Queensland headworks system. Watkins and McKinney [1998] developed a model involving
capacity expansion of an integrated surface and groundwater system. Similarly, Chung et al. [2009] applied
an optimization model to determine the capacity expansion schedule for groundwater supply. They consid-
ered a variety of expansion options involving surface and groundwater sources such as increasing borehole,
reservoir, and desalination plant capacity. Mahmoud [2006] employed a high dimension dynamic program-
ming model to determine the optimal expansion schedule of a desalination plant. In all these studies, only
infrastructure options were considered as decisions. Given there is likely to be interaction between infra-
structure and operating rule options, not optimizing operating options jointly with infrastructure options
represents a potentially missed opportunity of finding even better solutions.

The high capital costs and environmental impacts associated with expanding or building new major urban
water infrastructure warrant the investigation of scheduling system operating rules such as reservoir operat-
ing rules, demand reduction policies and drought contingency plans, as a way of delaying or avoiding the
expansion of water supply infrastructure [Lund, 1987; Rosenberg et al., 2008; Rubinstein and Ortolano, 1984].
Rosenberg et al. [2008] identified the best portfolio of conservation programs, infrastructure expansions, and
operational allocations. However, they did not implement any scheduling or sequencing planning in their
study. Lund [1987] incorporated conservation rules into the scheduling capacity expansion problem. He
demonstrated the benefit of using conservation rules to defer water treatment plant expansion. Similarly,
Rubinstein and Ortolano [1984] presented a framework to determine systematically the optimal combination
of demand reduction and supply augmentation projects. In both of these studies, long-term demand reduc-
tion such as due to improved efficiency of water-using appliances were considered. A limitation of these
studies was their insufficient attention to the issue of drought security. An urban system would be expected
to cope/survive extreme droughts with long return periods. If the optimization framework does not ‘‘see’’
such droughts, the optimal solutions are likely to be optimistic and risk the system being vulnerable to
severe drought [Mortazavi et al., 2012].

In Lund [1987], the present worth of conservation cost and capacity expansion cost was minimized to find
the optimum time to add new capacity to the system. However, a drawback of this approach is that dis-
counting conservation costs can lead to higher levels of demand reduction in the future than in the present.
Similarly, although Rubinstein and Ortolano [1984] considered the trade-off between the present worth cost
of projects and the expected value of the costs to cope with emergencies, there is no guarantee that the
social burden of coping with emergencies is shared equitably across planning stages.

The issue of temporal equity, namely the sharing of the social burden of drought across different planning
stages, can be politically and socially sensitive. In such a case, the distribution of equity implicit in a
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minimization of present worth cost may
not be acceptable. Cai et al. [2002] recog-
nized this problem when commenting on
the difficulty of selecting a discount rate in
an analysis of sustainability—indeed they
chose to explicitly trade-off measures of
efficiency and equity rather than impute
the trade-offs associated with a particular
discount rate. Van Liedekerke [2004] pre-
sented a critique of discounting. While
acknowledging that the choice of discount
rate affects temporal equity, he argued
that the distribution of benefits and costs
over time should not be determined by
selection of a particular discount rate. At
the empirical level, there are examples of
equity being maintained over time. For
example, in NSW, Australia, major water
utilities are regulated by operating licenses
which, inter alia, define levels of service

with regard to reliability of supply and severity of emergencies—of relevance here is that these levels of
service remain invariant for different future demand scenarios.

In summary, a number of significant shortcomings have been identified in the reviewed studies. These
include the failure to jointly consider the interaction between operating rules and infrastructure decisions,
to adequately address drought security and to deal with the issue of equitably sharing the social costs of
drought emergencies. These shortcomings are likely to undermine the credibility/relevance of the optimal
solutions.

This paper presents a multiobjective optimization approach to scheduling capacity expansion in an urban
water resource system that addresses the shortcomings identified in previous studies. The paper is organ-
ized as follows: First, a new formulation of the multiobjective scheduling capacity expansion problem is pre-
sented. Then using a case study based on the Canberra headworks system, seven scenarios are investigated
to demonstrate the significance of the identified shortcomings and how the new approach deals with
them.

2. The Multiobjective Scheduling Capacity Expansion Problem

This section presents a formulation of the scheduling capacity expansion problem that addresses the previ-
ously identified practically significant shortcomings. To the authors’ knowledge, such a formulation has not
been previously presented and solved.

2.1. Formulation
We begin with definition of terminology. Figure 1 illustrates an example of the scheduling capacity expan-
sion process. It presents time series of demand and yield (that is, supply that can be sustained with a certain
drought security and level of service). Given the initial yield of the system is Y0, the system can meet
demand up to time T1. At time T1, a decision is made to add extra yield DY1. As a result, system yield will
exceed demand until time T2. In a similar manner, decisions are taken at later times to provide additional
yield. Thus, T1, T2, and so on represent change points at which decisions are made. The period between two
consecutive change points is called a planning stage.

Suppose the planning period of T years is subdivided into M planning stages with the ith stage commenc-
ing at time Ti. To account for climate variability and other stochastic inputs, the inputs to the system are
replicated N times over the planning period by sampling from a suitably constructed probability model of
the inputs. For each replicate r, qtr is a vector of streamflow and other input values at multiple sites for year

Figure 1. Schematic of scheduling capacity expansion over a planning
horizon.
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t, and dtr is a vector of unrestricted demand at multiple sites for year t. The notation Qr
u:v denotes the time

series of vectors qtr ; t5u; ::; v.

Let xi5fx1
i ; ::; xp

i g denote a p-vector of decision variables that are implemented at the start of the ith plan-
ning stage. The decision vector can represent a mix of infrastructure options and operating rules. A solution
is defined as a sequence of decision vectors over the M planning stages x5fx1; ::; xMg.

The simulation model of the urban water resource system produces N replicates of response denoted by
Zr

1:T 5M½x;Qr
1:T ;Dr

1:T �; r51; ::;N where Qr
1:T and Dr

1:T represent the streamflow (and other inputs) and
demand for the rth replicate of the T-year planning period. The performance of the system is evaluated
using K objective functions

fiðxÞ5
XT

t51

/ðtÞE½fiðZ1:tðx1:tÞÞ� �
1
N

XT

t51

/ðtÞ
XN

r51

fiðZr
1:t
ðx1:tÞÞ; i51; ::; K (1)

where x1:t5fx1; ::; xj : Tj � t < Tj11g is the sequence of projects or decision vectors implemented on or
before year t and /ðtÞ is a temporal discounting factor. The term E fiðZ1:tðx1:tÞÞ½ � is the expected value of the
ith objective function for year t and is evaluated by averaging over the N replicates—the notation empha-
sizes the fact that the objective function value depends on the response from the simulation model which
in turn depends on the decision values.

The multiobjective optimization problem for the scheduling capacity expansion problem involves minimiz-
ing the K objective functions over the decision space subject to constraints that include constraints on stag-
ing decisions, which are discussed further in section 3.3. This formulation addresses the shortcomings
identified in previous applications in the following ways:

1. The use of multiple replicates of input data ensures that drought security can be adequately addressed.
Mortazavi et al. [2012] dealt with the issue of drought security by choosing an input record with sufficient
length to ensure the system could cope with droughts up to a specified return period. However, in the case
of scheduling, their approach cannot be used because the planning period T is fixed and because the per-
formance of the system changes over time. The use of multiple replicates of input data provides a solution
to this problem. By selecting an appropriate number of replicates N, one can ensure the system will encoun-
ter droughts of appropriate severity.

2. The use of multiple replicates of input data ensures that the solutions are not dependent on any particu-
lar sequence of future climate and demand. This allows the use of a simulation model that can respond to
changes in both infrastructure and operating rules. In turn, this enables both operating rules and infrastruc-
ture investments to be jointly optimized. The findings of Mortazavi et al. [2012] suggest that such capability
is likely to produce significant benefits.

3. The potential equity issue arising from temporal discounting of social costs can be addressed in a multi-
objective context by exploring the trade-offs between economic and equity criteria.

In the subsequent sections, the benefits of this formulation will be investigated using a case study.

2.2. Optimization Methods
This section briefly reviews the optimization methods that have been employed in capacity expansion prob-
lems and identifies those best suited for solving the problem described in section 2.1.

Approaches using some form of linear programming include Khaliquzzaman and Subhash [1997] who used
network linear programming for sizing of reservoirs in a water resource system and Mousavi and Ramamur-
thy [2000] who integrated an optimal control theory approach with successive linear programming to deter-
mine the reservoir sizing. However, our formulation is not amenable to linear programming approaches
because of nonlinearities in objective functions and constraints.

Dynamic programming (DP) [Bellman, 1957] has been used in the sizing and sequencing water resources
projects [Butcher et al., 1969; Erlenkotter, 1973; Erlenkotter and Trippi, 1976; Grossman and Marks, 1977; Knud-
sen and Rosbjerg, 1977; Morin and Esogbue, 1971]. The main drawback of DP is that it can only be used for a
relatively small number of projects because the number of possible states grows exponentially with the
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number of projects [Luss, 1982]. This so-called curse of dimensionality limits the application of DP [Hsu et al.,
2008].

Evolutionary methods such as genetic algorithms (GAs), when carefully applied, are capable of handling
complex systems and their associated nonlinearities with reasonable success. Connarty and Dandy [1996]
applied a GA to a water supply system to find optimum water price and project sequences. In a similar way,
Chang et al. [2009] hybridized a GA and constrained differential dynamic programming (CDDP) to optimize
capacity expansion schedules for groundwater supply. They used a GA to investigate capacity expansion
alternatives and then applied the CDDP algorithm to compute the optimal pumping policy associated with
the selected expansion options. It is worth noting that this hierarchical optimization approach is likely to
produce a suboptimal solution because the pumping policy and capacity expansion were not jointly
optimized.

All of the above mentioned studies have only dealt with a single objective. Rubinstein and Ortolano [1984]
used DP in multiobjective capacity expansion. Because DP cannot optimize two objectives jointly, they
weighted the multiple objectives to form a single objective. Yang et al. [2007] used a hierarchical approach
to integrate a multiobjective genetic algorithm (MOGA) with CDDP; MOGA was used to generate various
combinations of reservoir capacity and CDDP was used to distribute optimal releases among reservoirs to
satisfy water demand to the extent possible.

Of the general approaches reviewed, those based on evolutionary methods appear best suited for the mul-
tiobjective problem described in the previous section. They can interface with complex nonlinear simulation
models, and handle multiple nonlinear objectives and constraints. In view of the satisfactory performance
of the e-dominance multiobjective optimization evolutionary algorithm (eMOEA) in Mortazavi et al. [2012], it
was decided to use eMOEA to solve the multiobjective scheduling capacity expansion problem in the case
study. eMOEA is a member of the evolutionary algorithm family whose distinguishing feature is the use of
the e-dominance concept which divides the objective space into hyperboxes of size e and allows only one
nondominated solution to reside in each box [Laumanns et al., 2002]. Other e-dominance multiobjective
evolutionary algorithms used in water resource applications such as e-NSGA and BORG are discussed by
Reed et al. [2013]. The practical advantage of this feature is that, by selecting an appropriate e value for each
objective, it is possible to avoid searching for solutions close to already found solutions.

3. Case Study: Description and Problem Formulation

This section introduces the case study which is based on the water supply headworks system for Canberra,
Australia’s capital city. An overview of the Canberra system is presented followed by a detailed formulation
of the multiobjective scheduling capacity expansion problem.

3.1. Description of Canberra System
The Canberra headworks system serves a current population of approximately 420,000. Water is harvested
from two catchments, Cotter and Googong, which flank the city to the west and east, respectively. A net-
work of pipelines, pumping stations, and treatment plants connects four reservoirs to the Canberra demand
zone. Releases from the reservoirs have to meet, not only the consumption needs of the Canberra urban
area, but also environmental flow requirements.

A WATHNET5 [Kuczera et al., 2009] model of the Canberra system was constructed. Figure 2 presents the
WATHNET5 schematic. The network of reservoirs, pumping stations, and water treatment plants supplies
water to the demand zone labeled ‘‘Canberra.’’ The existing system includes four reservoirs, Corin, Bendora,
Cotter, and Googong. The reservoirs have a total storage capacity of 206,732 ML. Googong Reservoir is the
largest reservoir in the system with a capacity of 121,084 ML. There are two water treatment plants, Goo-
gong and Stromlo WTP, serving the Canberra population.

In this case study, a hypothetical population scenario corresponding to a highly stressed system is pre-
sented. The base population is 175% of the current population and is assumed to grow at 1.2% per annum
over a 30 year planning period with constant per-capita demand set at 178 kL/person/yr. It is noted that
this arrangement ignores the correlation between demand and climate and thus may underestimate the
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consequences of drought. Multiple replicates of monthly future streamflow data for the 30 year planning
period were sampled from a stochastic model calibrated to the historical record from 1871 to 2009.

To cater for the increase in demand, three options are available for augmenting supply—these are high-
lighted in the WATHNET5 schematic by dashed ovals. The first is to increase the capacity of Cotter Reservoir
by up to 100,000 ML. The second is to build a new pump station to divert up to 6000 ML/month from the
Murrumbidgee River into Googong Reservoir. The third option is to install domestic rainwater tanks in up to
15,000 houses.

Water consumption exhibits strong seasonality with peak monthly summer demand typically more than
doubling monthly winter base demand. The increase in summer demand is largely due to outdoor water
use associated with private and public irrigation of gardens and parks. As a result, there is considerable
scope in targeting restrictions on outdoor water use. In this study, four levels of restrictions are available
with Table 1 presenting the ratio of restricted to unrestricted demand for each level—the fourth level of
restrictions corresponds to a total ban on outdoor water use.

3.2. Decision Variables
The 30 year planning horizon, nominally taken from 2010 to 2039, was divided into three equal-length plan-
ning stages with change points occurring in 2010, 2020, and 2030. Six decisions associated with operational
and capacity expansion options are considered at each change point. These decisions and their lower and
upper limits are presented in Table 2. We note that it is likely to be beneficial to allow operational decisions
to be revisited more frequently than capacity expansion options.

Three decisions involve capacity expansion, namely Cotter Reservoir capacity, Murrumbidgee diversion
capacity and the number of installed domestic rainwater tanks. The Murrumbidgee pump storage trig-

ger controls the pumping of water from the Mur-
rumbidgee River to Googong Reservoir after the
Murrumbidgee diversion pump station is commis-
sioned; when the storage fraction in Googong Reser-
voir falls below the trigger level, pumping from the
Murrumbidgee River up to the maximum capacity of
the pump station is initiated. The level-one restric-
tion trigger x2 and increment x3 are operational
decisions that regulate the occurrence of restrictions

Figure 2. WATHNET5 schematic of Canberra headworks system.

Table 1. Demand Fractions for Each Restriction Level

Restriction Level
Ratio of Restricted to
Unrestricted Demand

1 0.95
2 0.80
3 0.70
4 0.65
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on consumption during a drought drawdown. If the total storage fraction falls below x2 then the first
restriction level is imposed. If the total storage fraction falls below x2 1 x3, then the second level of
restrictions is imposed and so on.

3.3. Constraints
The decisions in a scheduling expansion problem may be constrained across planning stages. For example,
decisions may be subject to a ‘‘one-off’’ constraint. If a nonzero value is assigned at a planning stage, then
that value remains unchanged for all remaining planning stages. For example, if the capacity of Cotter is
increased by 50,000 ML at the start of stage 2, then the capacity cannot be changed in subsequent planning
periods.

Likewise decisions may be subject to a ‘‘developing’’ constraint where the decision value cannot decrease
at subsequent planning stages. For example, the number of installed domestic rainwater tanks can be
increased but not decreased at each planning stage. The following equation formalizes these constraints:

xi
t115xi

t if xi
t > 0 and xi 2 ‘‘one-off ’’constraints

xi
t11 � xi

t if xi 2 ‘‘developing ’’constraints
(2)

where xi
t is the ith decision at planning stage t.

There are a number of ways of handling such constraints when using evolutionary algorithms [Michalewicz,
1995]. In this study, a ‘‘repair infeasible solution’’ approach was used to implement equation (2). This
involved using a script (or user-defined program) that is executed at each time step prior to the simulation.
If a decision at a particular planning stage is infeasible, the script ‘‘repairs’’ it; the repaired feasible solution is
not used to update the population. As noted, there are other ways of implementing such constraints. For
example, the ‘‘one-off’’ constraint could be implemented with two decision variables, the first defining
which stage (if any) the decision is invoked and the second defining the magnitude of the decision. This
has the advantage of guaranteeing feasibility and reducing the size of the decision space when there are
three or more planning stages.

3.4. Objective Functions
All the reviewed studies dealing with capacity expansion have sought to minimize the present worth of cap-
ital, operating and other costs. In the context of the formulation described in section 2.1, the expected value
of the total present worth cost can be expressed as:

f ðxÞ5 1
N

XT

t51

1

ð11roÞt
XN

r51

Cr
t ðx1:tÞ1CRr

tðx1:tÞ1Ur
tðx1:tÞ (3)

where ro is the discount rate and Cr
t ðx1:tÞ is the cost of infrastructure investments and operating costs for

year t and replicate r, CRr
tðx1:tÞ is the economic cost of imposing restrictions on demand, and Ur

tðx1:tÞ is the
cost of unplanned demand shortfalls. As noted, exclusive reliance on this type of objective can hide the
trade-off between capital and operating costs and the social costs arising from restrictions and unplanned
shortfalls.

Table 2. List of Decision Variables

Decision Description Lower Limit Upper Limit Category

1 Cotter capacity upgrade (ML) 0 100,000 ‘‘One-off’’ capacity expansion
2 Level-one restriction storage trigger 0 1 Operational
3 Restriction storage trigger increment 0.05 0.25 Operational
4 Murrumbidgee diversion (ML/month) 0 6000 ‘‘One-off’’ capacity expansion
5 Murrumbidgee pump storage trigger 0 1 Operational
6 Number of houses with tanks 0 15,000 ‘‘Developing’’ capacity expansion
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To explore this trade-off, two multiobjective formulations are considered:

1. Two-Objective Trade-Off

The expected value of the total present worth cost can be decomposed into its constituent costs to enable
exploration of the trade-off between capital, operating, and unplanned shortfall costs and costs due to
restrictions. This yields the following two objective functions:

min
x

f1ðxÞ5
1
N

XT

t51

1

ð11roÞt
XN

r51

Cr
t ðx1:tÞ1Ur

tðx1:tÞ (4)

min
x

f2ðxÞ5
1
N

XT

t51

1

ð11roÞt
XN

r51

CRr
tðx1:tÞ (5)

The second objective minimizes the expected discounted cost of imposing restrictions. However, minimiz-
ing discounted restriction costs can produce undesirable social outcomes. Due to discounting, the same fre-
quency and severity of restrictions in the future will be being costed less than if the same were to occur in
the present. As a result, minimization of discounted restriction costs can lead to a higher frequency and
severity of restrictions in the future, a situation that often would be deemed politically unacceptable on
social equity grounds.

2. Three-Objective Trade-Off

One way to overcome this practically significant shortcoming is to avoid discounting restriction costs. How-
ever, this in itself will not assure equity (or equal sharing of the burden of restrictions) over planning stages.
To achieve this, it is necessary to introduce a third objective which seeks to minimize the difference in
undiscounted restriction costs over the planning stages. These considerations lead to the following three
objective functions:

min
x

f1ðxÞ5
1
N

XT

t51

1

ð11roÞt
XN

r51

Cr
t ðx1:tÞ1Ur

tðx1:tÞ (6)

min
x

f2ðxÞ5
1
M

XM

i51

1
N

XN

r51

Xt5Ti11

t5Ti

CRr
tðx1:tÞ (7)

min
x

f3ðxÞ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM

i51

1
N

XN

r51

Xt5Ti11

t5Ti

CRr
tðx1:tÞ2f2ðxÞ

 !vuut
2

(8)

The first objective seeks to minimize the present worth of capital, operating, and unplanned shortfall costs.
The second minimizes the expected cost of undiscounted restrictions in a planning stage. The third mini-
mizes the standard deviation of undiscounted restriction costs between planning stages. This effectively
seeks to ensure the burden of restrictions on the community is shared as fairly as is possible across all plan-
ning stages. This approach is similar to that used by Cai et al. [2002] who used a similar dispersion measure
as an indicator of temporal equity.

Instead of using the objectives (7) and (8), one could impose an equity constraint such that f3ðxÞ � af2ðxÞ.
There are two problems with this approach. First, if a is set too low, there may be no feasible solution. Sec-
ond, as there is no obvious choice for a, one would explore solutions for different values of a. In that case, it
seems preferable to directly minimize the three objectives (6), (7), and (8) and explore the trade-offs.

The capital cost of the infrastructure options is summarized in Table 3. These costs are indicative and there-
fore should not be used outside this study. Two capital items involve a binary choice: if the item is selected
by the optimizer, then there is a fixed setup cost along with a unit cost; if the item is not selected, there is
zero capital cost. Operating costs include pumping and treatment costs for transfers from Cotter Reservoir,
from the Murrumbidgee River, from Bendora Reservoir to Stromlo water treatment plant, from the Murrum-
bidgee River to Googong Reservoir, and from Stromlo water treatment plant to Googong Reservoir—the
costs range from $23/ML to $250/ML.
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The unplanned shortfall cost was set to $1.0
3 109/ML to ensure the optimizer steered
away from solutions that resulted in ‘‘run-
ning out of water.’’

The estimation of the economic cost of
restrictions follows the method of Dandy
[1992]. Recognizing that restrictions in Aus-

tralian urban areas are mainly targeted at outdoor water use, Dandy [1992] assumed that:

1. All the households have the same price elasticity of demand for outdoor use.

2. The price elasticity for outdoor use is constant within the range considered.

3. All households reduce their outdoor consumption in the same proportion in response to water
restrictions.

and used a willingness-to-pay analysis to show that the economic cost of restrictions in a drought event
could be approximated by

CR5
e

11e
PQ½12ð12RÞ

11e
e � ðif e 6¼ 21Þ (9)

where CR is the economic cost due to imposition of restrictions, P is the current price of water, Q is the unre-
stricted outdoor consumption, R is the fraction by which consumption is reduced, and e is the price elastic-
ity of demand for outdoor water. In this study, e and P were set equal to 20.25 (which represents a
relatively inelastic price response at the low end of empirical estimates) and $600/ML, respectively.

4. Case Study Scenarios and Results

This section presents the main findings of the case study. Seven scenarios are investigated with the intent
of demonstrating in a structured manner the limitations of earlier applications and the performance of the
formulation described in section 2.1.

4.1. Description of Scenarios
Table 4 summarizes the seven scenarios used to demonstrate the benefits of applying the multiobjective
formulation of section 2.1 to scheduling capacity expansion problems. The scenarios differ in the number of
objectives, staging of infrastructure and operational decisions, the discount rate, and the initial volume of
the reservoirs.

We devised five cases as summarized in Table 5. Each case used a number of scenarios for a particular pur-
pose. Case 1 compares Scenarios 1 and 3 to explore the benefit of scheduling infrastructural and opera-
tional decisions jointly. Case 2 compares Scenarios 2–4 to assess the sensitivity of results to choice of
discount rate. Thus far, only one objective is used in the optimization. Case 3 compares Scenarios 3 and 5 to
demonstrate the additional insights arising from use of multiobjective optimization. Case 4 pursues this fur-
ther comparing Scenarios 5 and 6 to investigate the trade-offs between equity and economic efficiency.
Finally, Case 5 compares Scenarios 6 and 7 to demonstrate the sensitivity of solutions to initial conditions.

Table 3. Infrastructure Cost of Capacity Expansion Decisions for Can-
berra Water Headworks System

Decision Variable Unit Cost

Cotter Reservoir capacity upgrade $50 3 106 1 $1923/ML
Murrumbidgee diversion $20 3 106 1 $42623/ML
Rainwater tanks $3000/house

Table 4. List of Scenarios

Scenario
Number of Objectives
(Relevant Equations)

Timing of Decisions
Discount
Rate (%)

Initial Reservoir
VolumeInfrastructural Operational

1 1 (3) Stage 1 Any stage 5 Full
2 1 (3) Any stage Any stage 1 Full
3 1 (3) Any stage Any stage 5 Full
4 1 (3) Any stage Any stage 10 Full
5 2 (4 and 5) Any stage Any stage 5 Full
6 3 (6–8) Any stage Any stage 5 Full
7 3 (6–8) Any stage Any stage 5 10th percentile
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In the first six scenarios, the reservoirs are
assumed to be full at the start of the first
planning stage. In Scenario 7, the initial
storage in the reservoirs is set to the his-
toric 10th percentile volume.

For each scenario, the simulations were
conducted using 50 replicates of stochas-
tically generated streamflow. It is

acknowledged that more replicates would be needed to ensure a high level of drought security. However, a
reduced number of replicates was chosen to make the computation on a desktop computer manageable
for the seven scenarios. As Mortazavi et al. [2012] have already demonstrated the sensitivity of optimal solu-
tions to the choice of maximum drought return period encountered in the simulation, it suffices in this
study to demonstrate that the formulation is capable of dealing with any nominated maximum drought
return period.

eMOEA is a probabilistic optimization method. Therefore, it is unable to guarantee convergence to the Par-
eto front. Accordingly, to reduce the chance of premature convergence affecting the results, each scenario
was optimized 10 times with different random number seeds. The results presented are the nondominated
solutions obtained from the pooled set of 10 runs. We consider this a conservative approach to help ensure
our solutions are practically Pareto optimal. The eMOEA parameters were: probability of crossover 5 1, prob-
ability of mutation 5 0.01, and probability of inversion 5 0.005. The maximum number of iterations for the
single objective scenarios, 1–4, was set equal to 10,000, while for the multiple-objective scenarios, 5–7, it
was set to 30,000. The eMOEA epsilon was set to 100,000 for the single objective cases and to 10,000 for the
first objective and to 1000 for the second and third objectives in the multiobjective optimization. These
epsilon values were deliberately chosen to be small to ensure high resolution. We note that in practice
larger epsilon values would be used—apart from decreasing computational time, coarser resolution of the
Pareto front reduces the chance of overwhelming decision makers without any practical loss of information
[Kollat and Reed, 2007].

5. Results and Discussion

5.1. Case 1—Scenarios 1 and 3: Benefits of Flexible Operating Rules
This Case investigates the benefit of allowing operating rules to change across planning stages. It was noted
in the literature review that infrastructure and operational decisions are not typically jointly optimized. In
Scenario 1, all infrastructure decisions are made at start of the first planning stage, while operational deci-
sions are flexible in the sense they can be revised at each planning stage. In contrast, in Scenario 3, all deci-
sions can be revised at any planning stage subject to the staging constraints listed in Table 2.

Tables 6 and 7 present, respectively, the costs and decisions for the two scenarios. To provide a better
understanding of how these scenarios deal with restrictions, the undiscounted restriction cost is presented
for each planning stage in Table 6. Scenario 1 has the higher restriction cost indicating a greater reliance on
imposing restrictions. In Scenario 1, the Murrumbidgee diversion had to be selected in the first stage. As a
result, the stage-one restriction levels were set to a very low level. However, in stage two, a severe restric-
tion policy was adopted with the level-one restriction trigger equal to 0.831. In contrast, Scenario 3 sees the
Murrumbidgee diversion deferred to stage two with a capacity of 4221 ML/month, which is 75% greater
than the capacity selected in Scenario 1. As a result of this increase in diversion capacity, the Scenario 3
level-one restriction trigger was set to 0.627 resulting in a lower chance of restrictions than in Scenario 1.

Table 5. List of Case Studies and Their Associated Scenarios

Case Scenarios Purpose

1 1 and 3 Impact of using fixed or flexible operational rules
2 2–4 Sensitivity to choice of discount rate
3 3 and 5 Use multiple objectives to explore potential trade-off
4 5 and 6 Use multiple objectives to deal with equity issues
5 6 and 7 Sensitivity to initial reservoir volumes

Table 6. Case 1 Results for Scenarios 1 and 3

Scenario

Total Present
Worth Cost
($million)

Present Worth of
Capital and
Operational

Cost ($million)

Total Present
Worth of Restrictions

Cost ($million)

Undiscounted Restriction
Cost ($million) Average of Undiscounted

Restriction Cost Over
Three Stages ($million)

Standard Deviation
of Undiscounted

Restriction Costs Over Three
Stages ($million)Stage 1 Stage 2 Stage 3

1 445 391 54 0 59.4 89.6 49.6 50.5
3 444 396 48 0.056 34.4 53.2 35.9 36.9
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In both scenarios, the restriction cost increases with stage. Of particular note is that there were virtually no
restrictions in stage one. This is because the system experienced the lowest demand and benefited most
from the full state of the reservoirs at the start of the planning period. As a result, a low level-one restriction
trigger was adopted at stage one. In the subsequent stages, the trigger was increased to cope with the
growing demand and the decreasing influence of the initially full system. Of interest is the finding for both
scenarios that the Cotter reservoir upgrade was not selected.

The most significant result is the small difference between the total present worth costs for the two scenar-
ios. Scenario 1 has a capital/operating present worth cost (PWC) that is $5 million less than that for Scenario
3. However, the restriction present worth cost for Scenario 3 is $6 million less than for Scenario 1. As a result,
Scenario 3 produces a total PWC that is $1 million less than for Scenario 1. This highlights the value of revi-
sing operational decisions during each planning stage. Even though in Scenario 1, infrastructure decisions
had to be made in stage one, the flexibility offered by revising operational decisions at each stage virtually
compensated for the loss of flexibility in infrastructure decision making.

So while the optimal strategy is to provide flexibility in timing and sizing for both infrastructure and opera-
tional decisions, this Case illustrates the importance of flexibility in operational decisions.

5.2. Case 2—Scenarios 2–4: Sensitivity to Discount Rate
Luss [1982] noted that the estimation of discount rate is subjective. To investigate the effect of discount
rate on the optimum solution, three scenarios with different discount rates, i.e., 1%, 5%, and 10% are com-
pared. The total present worth costs are presented in Table 8. There are large differences in total PWC across
the scenarios due to the spread in discount rates. The total PWC of Scenario 2 is about 3 times greater than
for Scenario 4. However, the important point here is that the discount rate exerts considerable influence on
the severity and frequency of restrictions over the three stages. As shown in Table 8, Scenarios 3 and 4 have
very similar total discounted restriction costs but their average undiscounted restriction costs over the three
stages are vastly different. It is also evident that the higher the discount rate, the higher the undiscounted
restriction costs in later planning stages.

The optimum decisions for the three scenarios are presented in Table 9. It is noted that only in Scenario 2 is
the Cotter upgrade option invoked with an upgrade capacity of 14,000 ML. This occurs because the use of
the low discount rate of 1% would result in a blowout of restriction costs if additional storage were not
available to reduce the frequency of restrictions.

The overall conclusion is that the discount rate determines how much reliance the optimizer places on the
imposition of restrictions to avoid unplanned shortfalls and on how restrictions are distributed over the
planning stages. Comparison of Scenarios 2–4 clearly shows that as the discount rate increases, the invest-
ment in infrastructure decreases at the expense of more restrictions imposed in future stages.

Table 7. Case 1 Optimum Decisions for Scenarios 1 and 3

Decisions

Scenario 1 Scenario 3

Planning Stage Planning Stage

One Two Three One Two Three

Cotter capacity upgrade (ML) 0 Same as stage one Same as stage one 0 0 0
Level-one restriction storage trigger 0.019 0.831 0.627 0.4 0.627 0.752
Restriction storage trigger increment 0.224 0.149 0.063 0.096 0.055 0.149
Murrumbidgee diversion (ML/month) 2414 Same as stage one Same as stage one 0 4221 4221
Murrumbidgee pump storage trigger 1 1 1 – 1 1
Number of houses with tanks 0 Same as stage one Same as stage one 0 0 0

Table 8. Case 2 Comparison of Three Scenarios With Different Discount Rates

Total Present
Worth Cost ($million)

Capital and
Operational Cost

($million)

Total Present Worth
of Restrictions
Cost ($million)

Undiscounted Restriction
Cost ($million)

Average of Undiscounted
Restriction Cost Over

Three Stages ($million)

Standard Deviation of
Restriction Costs Over
Three Stages ($million)Stage 1 Stage 2 Stage 3

775 708 67 0 33.3 48.8 27.4 28.6
444 396 48 0.056 34.4 53.2 35.9 36.9
267 221 46 45.66 50.3 80.5 58.8 53.4
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5.3. Case 3—Scenarios 3 and 5: Revealing Trade-Offs
In the scenarios considered so far, only one objective, namely minimization of the total present worth cost,
was considered. This cost includes capital, operating, and restriction costs—unplanned shortfall costs were
always zero because of their punitive unit value. However, there is a trade-off between capital, operating,
and unplanned shortfall costs and restriction costs. Indeed, more investment in infrastructure results in less
need to impose restrictions and vice versa. To demonstrate this trade-off, Scenario 5 considers a multiobjec-
tive optimization jointly minimizing capital, operating, and unplanned shortfall costs and minimizing restric-
tion costs. The two objectives are described by equations (4) and (5). In Figure 3, the Pareto frontier for
Scenario 5 is presented. The results for Scenario 3, which is a special case of Scenario 5, are also shown in
this figure. As expected, the Scenario 3 result is located on the Pareto frontier, which confirms that Scenario
3 represents only one of the possible solutions for Scenario 5.

Figure 3 shows there is a distinct trade-off between capital, operating, and unplanned shortfall costs and the
cost of imposing restrictions. Indeed, the restriction cost can be very large in the absence of sufficient infrastruc-
ture investment. The figure shows there is initially a very favorable trade-off between higher capital investment
and reduced restriction cost (see labeled points 1 and 2) followed by a progressively worsening trade-off culmi-
nating with virtually zero restriction costs when the present worth of capital, operating, and unplanned shortfall
costs exceeds $750 million. Up to $750 million, there are no unplanned shortfall costs. However, beyond that,
unplanned shortfall costs grow rapidly to produce minute reductions in restriction costs.

Discounting can hide the significance of the impact of restrictions on the community. To highlight this, the
four solutions on the Pareto frontier in Figure 3 are summarized in Table 10. The results show that for all the
solutions, progressively more severe restrictions are imposed in future planning stages highlighting the
implicit inequity associated with discounting.

5.4. Case 4—Scenarios 5 and 6: Revealing Equity Trade-Offs
To deal explicitly with the equity issue and to offer the opportunity to moderate differences across planning
stages, the three-objective formulation described by equations (6–8) is considered in Scenario 6. The first

objective minimizes total present worth
of capital, operating, and unplanned
shortfall costs, while the remaining two
objectives introduce equity considera-
tions. The second objective seeks to
minimize the magnitude of undis-
counted restriction costs across the
stages while the third objective seeks to
minimize the difference in undiscounted
restriction costs between stages.

Figure 4 presents the Pareto frontier for
Scenario 6. What is striking is the
absence of a surface. The trade-offs
essentially lie on a one-dimensional
thread. Once significant restriction costs
are encountered, there is a strong

Table 9. Case 2 Optimum Decisions for Scenarios 2–4

Decisions

Scenario 2 (r 5 1%) Scenario 3 (r 5 5%) Scenario 4 (r 5 10%)

Planning Stage Planning Stage Planning Stage

One Two Three One Two Three One Two Three

Cotter capacity upgrade(ML) 0 0 14,352 0 0 0 0 0 0
Level-one restriction storage trigger 0.004 0.815 0.752 0.4 0.627 0.752 0.8 0.68 0.647
Restriction storage trigger increment 0.18 0.162 0.162 0.096 0.055 0.149 0.211 0.061 0.061
Murrumbidgee diversion (ML/month) 3995 3995 3995 0 4221 4221 0 3091 3091
Murrumbidgee pump storage trigger 1 1 1 – 1 1 – 1 1
Number of houses with tanks 0 0 0 0 0 0 0 0 0

Figure 3. Pareto frontier for Scenario 5.
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dependence between the average cost of undiscounted restrictions and the variability of cost across stages.
To offer more insight into this trade-off, Figure 5 presents a projection of the three-dimensional Pareto front
onto a two-dimensional objective plane with the third objective presented by different colors. It shows that
the average of undiscounted restriction costs decreases substantially as capital, operating, and unplanned
shortfall cost increases. It shows that, unless there is sufficient investment to eliminate restrictions, it is not
possible to share equally the burden of restrictions across stages; moreover, as the average level of restric-
tion costs in a stage grows there will be greater variability across the stages.

To highlight the difference between Scenarios 5 and 6, four solutions were selected for each scenario in
order to have equal capital and operating costs for each pair of solutions. Table 11 presents the results.
Comparison of restrictions present worth costs for Scenarios 5 and 6 indicate that Scenario 6 has lower
restrictions present worth costs compared to Scenario 5. What is striking is the fact that Scenario 6 produces
solutions with lower average (undiscounted) restriction costs across the planning stages and less variability
in restriction cost between stages. This significantly improved equity outcome arises solely from the choice
of objective functions. The use of three objectives enabled a more thorough exploration of cost and equity
with the consequent identification of solutions with more equitable outcomes for the same capital and
operating present worth cost.

Table 12 presents the decisions associated with the four Scenario 6 solutions in Table 11. The table ranks
the solutions from smallest to highest capital and operating cost. The first solution has no capacity expan-
sion except for the Murrumbidgee diversion in the second planning stage. The first and second stage level-
one restriction triggers are very high indicating a high frequency of restrictions. In solutions 2 and 3, the
size of the Murrumbidgee diversion increases. For solution 3, the Murrumbidgee diversion is brought for-
ward to stage one and a rollout of rainwater tanks over the three stages is adopted with the number of

Table 10. Comparison of Four Solutions Marked on the Pareto Frontier for Scenario 5 (Figure 3)

Present Worth of Capital and
Operational Cost ($million)

Unplanned Shortfall
Cost ($million)

Restrictions
Present Worth
Cost ($million)

Undiscounted Restriction Cost
($million)

Average of Undiscounted
Restriction Cost Over

Three Stages ($million)

Standard Deviation of
Undiscounted Restriction Costs

Over Three Stages ($million)Stage 1 Stage 2 Stage 3

323 0 221 77.6 195.8 240.6 171 94.7
373 0 79.9 4.0 80.7 132.9 72.5 67.2
525 0 9.86 0 7.9 21.1 9.68 12.7
779 27.4 0.322 0 0 1.05 0.351 0.497

Figure 4. Pareto frontier for Scenario 6.
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tanks hitting the upper bound in
stage two. Offsetting this increased
capital investment are lower level-
one restriction triggers leading to a
lower frequency of restrictions. Solu-
tion 4 is the most costly with the
Cotter upgrade and Murrumbidgee
diversion maximized in stage one
and rainwater tank installations
maximized in stage two. The level-
one restriction trigger is low result-
ing in virtual elimination of restric-
tions. It is noted that a very
significant unplanned shortfall cost
is required to bring about a minute
reduction in restriction costs. As
already noted, this is due to the
punitive cost assigned to unplanned
shortfalls. Of interest, all solutions
opted for the Murrumbidgee diver-

sion and set the pump trigger to one. This maximizes the yield from what is the most cost effective
capital option.

5.5. Case 5—Scenarios 6 and 7: Sensitivity to Initial Conditions
In the previous cases, it was observed that in the first planning stage, restrictions were typically low. This is
attributed to the fact that the system was full at the start of stage one and that stage one had the lowest
demand. To separate the contributions of these two factors, Case 5 investigates the sensitivity of the Pareto-
optimal solutions to the initial reservoir storage. In Scenario 6, the reservoirs were full at the start of the plan-
ning period, while in Scenario 7 the initial reservoir volumes were set equal to the 10th-percentile storage vol-
umes (which were obtained from a 130 year simulation using historical flows and demand corresponding to
the start of the planning period) —this corresponds to a total initial volume equal to about 38% of total reser-
voir capacity. Figures 6 and 7 show the Pareto frontiers for Scenarios 6 and 7. They clearly show that solutions
for Scenario 7 are more expensive than for Scenario 6 especially as the restriction costs increase. We selected
four solutions on each front which are marked on Figure 7. These solutions were selected to produce four
pairs where each member of a pair was located on a different Pareto front but had a near equal average
undiscounted restriction cost. Table 13 presents the three objective function values for each solution as well
as the undiscounted restriction costs for each stage for Scenarios 6 and 7, respectively, whereas Table 14
presents the decisions associated with each marked solution for Scenarios 6 and 7, respectively.

The results show that the optimal scheduling policy is affected by the initial state of the storages. The lower
initial storage in Scenario 7 makes the system more vulnerable to drought in the first planning stage. The
stage-one decisions reflect this vulnerability by bringing forward to stage one the capital investments that
were deferred to latter stages in Scenario 6. For example, for solution 1, the Murrumbidgee diversion is
brought forward to stage one in Scenario 7 whereas in Scenario 6 it was deferred to stage two. Likewise, for
solution 4 the rollout of over 14,000 rainwater tanks was brought forward from stage three in Scenario 6 to
stage one in Scenario 7. Even though the initial storage corresponds to the historic 10th-percentile value in
Scenario 7 (which corresponds to 38% storage), only solutions 1 and 2 commence with the system in
restrictions.

5.6. Discussion
The use of multistage decisions allows the optimizer to identify solutions that would be classified as being
‘‘flexible’’ in the sense that the solutions can adapt to changing future circumstances. In this case study, the
optimizer exploited the fact that at the beginning of all but one scenario, the system was full and subject to
the lowest demand. As a consequence, the optimizer tended to defer augmentations to later stages and
rely on adjusting operational decision variables. Even in this constrained case study, the benefit of flexibility

Figure 5. Pareto trade-off between present worth of capital, operational, and
unplanned shortfall costs and average of undiscounted restriction costs over three
planning stages for Scenario 6 with the color scale representing the standard devia-
tion of undiscounted restriction cost.
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was evident with clearly superior outcomes over solutions which lim-
ited flexibility such as in scenario 1 where infrastructure decisions had
to be selected at stage one.

The formulation developed in this case study uses multiple replicates
of future inputs to the system—here an input is an exogenous variable
that cannot be controlled by the system. The case study illustrated the
multireplicate input approach using streamflow as the exogenous
input. The key idea is to ensure that the optimizer is ‘‘aware’’ that future
streamflow is highly variable. However, the methodology is more gen-
eral in the sense that the set of inputs can be expanded to include
multiple exogenous variables that are uncertain and cannot be con-
trolled by the system—such variables may include population growth
rates, social expectations, and so on. As more of such variables are
internalized into the optimization, one would expect solutions to
become more robust and practically useful. However, such generaliza-
tion is not trivial and presents a range of significant problems which
are well beyond the scope of this study.

The multiobjective scheduling capacity expansion formulation in sec-
tion 2 was abstract. Only in the case study were specific objective func-
tions, constraints and decisions proposed. This was done deliberately
to stress that the problem formulation should be user driven and user
relevant, rather than constrained by the limitations of the optimization
method. The use of multiobjective evolutionary algorithms helps
empower the decision maker to formulate the optimization problem
so it is more closely aligned with his/her expectations. The WATHNET5
software was built on this premise—it is generic in the sense that a
scripting language is used to define objectives, constraints, and deci-
sions. Nonetheless, there remain very significant challenges to over-
come before the full complexity and uncertainty faced by decision
makers can be embodied in optimization models.

The Canberra case study was conducted on a four-core desktop com-
puter with typical run times of 16 h—this restricted the number of rep-
licates to 50. However, because evolutionary algorithms are readily
parallelized, access to a large cluster of CPU cores would enable use of
many more replicates to ensure the optimizer ‘‘sees’’ more extreme
droughts and application to more complex systems.

6. Conclusion

Various options are available to water agencies responsible for
meeting the growing demand for water arising from urban popula-
tion growth. These options include operational decisions such as
imposing restrictions, rules controlling water transfers and alloca-
tions, policies promoting more efficient water use, and infrastruc-
ture investments such as harvesting new sources of water. Because
the performance of the urban water resource system will change
over time, the challenge is to find the best combination of these
options over time.

Many studies have investigated methods to find the optimum size and
timing of capacity expansion of projects with the aim of minimizing
the total present worth cost. However, review of these studies identi-
fied a number of practically significant shortcomings. These include
the following:Ta
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1. Minimizing a single objective based on present worth cost hides a socially sensitive equity issue related
to the sharing of the burden of restrictions across planning stages.

2. Failure to jointly optimize infrastructure and operational decisions.

3. Failure to address drought security adequately due to inadequate sampling of severe droughts.

This study presents a multiobjective formulation that addresses these shortcomings in a practicable man-
ner. The formulation uses a multireplicate approach in which multiple realizations of future inputs are simu-
lated. It permits use of a full simulation model that enables the tracking of system performance over time
and enables the optimization algorithm to search for the best mix of both infrastructure and operational
decisions.

Figure 6. Comparison of Pareto frontiers for Scenarios 6 and 7.

Figure 7. Pareto trade-off between present worth of capital, operational, and unplanned shortfall costs and average of undiscounted
restriction costs over three planning stages for Scenarios 6 and 7 showing location of four selected solutions on each front.
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A case study based on the Canberra headworks system demonstrated the capability of the formulation. The
following conclusions, though derived from the case study, are deemed to have applicability beyond the
case study itself:

1. Minimizing total present worth cost can lead to more severe and frequent restrictions in future planning
stages. This is potentially an unacceptable social/political outcome. The magnitude of this inequity is
dependent on the discount rate with higher discount rates leading to greater temporal inequity in restric-
tion outcomes.

2. The use of a multiobjective formulation, which minimizes the present cost of capital, operating, and
unplanned shortfall costs together with the level and variability of restriction costs across planning stages,
makes the equity issue visible to a decision maker.

3. The optimal scheduling solution can be sensitive to the initial state of the system. This is by no means an
undesirable finding. Indeed, by being able to schedule both infrastructure and operational decisions across
multiple planning stages, it is possible to adapt to changing circumstances. This flexibility is arguably the
most important feature of the formulation developed in this study.
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